
Programmable Relations for Managing Change 
During Software Development 

Stanley M. Sutton, Jr. Dennis Heimbigner 
Leon J. Osterweil* 

CU-CS-418-88 September 15, 1988 

Department of Computer Science 
Campus Box 430 

University of Colorado 
Boulder, CO 80309-0430 

(303) 492-7514 

* Present address: Department of Information and Computer Science, 
University of California, Irvine, CA 92717. 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
15 SEP 1988 2. REPORT TYPE 

3. DATES COVERED 
  00-00-1988 to 00-00-1988  

4. TITLE AND SUBTITLE 
Programmable Relations for Managing Change During Software 
Development 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Colorado,Department of Computer 
Science,Boulder,CO,80309 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Management of changes during software development is a central problem in software object management.
Successful propagation of changes requires effective use of relationships among objects. The structure of
relationships identifies the direction order, and extent of change propagation, while the semantics of
relationships indicate the kinds of changes to be made. Many data models proposed for software object
management offer some useful features for controlling change but lack others. Configuration control and
version management systems support some useful relationships and types but are too specialized.
Object-oriented systems are more general, but while they may support derived relationships they represent
those relationships only as attributes of objects. Conversely entity-relationship models provide for the
independent representation of extensional relationships but typically do not support derived relationships
fully. The relational model also represent relationships separately, but efficiency and restrictions to
atomicvalued attributes have been problems for software object management. We propose a model of
programmable relations over composite objects. This general model allows relationships among objects to
be represented explicitly, and it enables derivation and other processes to be programmed into the
implementation of relations. Programmable implementations, combined with an operationally-efficient
interface, should help to overcome the performance problems of conventional relational systems. Based on
this model we have developed the language APPL/ A, an extension of Ada that includes active,
programmable relations plus mechanisms for forward and backward inferencing over relations. We
introduce APPL/ A and present an example system of relations to illustrate relation specifications and the
opportunities for alternative relation implementations. 

15. SUBJECT TERMS 



16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

27 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 





ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS 
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO 
NOT NECESSARILY REFECT THE VIEWS OF THE NATIONAL SCIENCE FOUN
DATION 



Abstract 

Management of changes during software development is a central problem in soft
ware object management. Successful propagation of changes requires effective use of 
relationships among objects. The structure of relationships identifies the direction, 
order, and extent of change propagation, while the semantics of relationships indicate 
the kinds of changes to be made. 

Many data models proposed for software object management offer some useful fea
tures for controlling change but lack others. Configuration control and version man
agement systems support some useful relationships and types but are too specialized. 
Object-oriented systems are more general, but while they may support derived rela
tionships they represent those relationships only as attributes of objects. Conversely, 
entity-relationship models provide for the independent representation of extensional 
relationships but typically do not support derived relationships fully. The relational 
model also represent relationships separately, but efficiency and restrictions to atomic
valued attributes have been problems for software object management. 

We propose a model of programmable relations over composite objects. This gen
eral model allows relationships among objects to be represented explicitly, and it en
ables derivation and other processes to be programmed into the implementation of 
relations. Programmable implementations, combined with an operationally-efficient 
interface, should help to overcome the performance problems of conventional relational 
systems. 

Based on this model we have developed the language APPL/ A, an extension of 
Ada that includes active, programmable relations plus mechanisms for forward and 
backward inferencing over relations. We introduce APPL/ A and present an exam
ple system of relations to illustrate relation specifications and the opportunities for 
alternative relation implementations. 

2 





1 Introduction 

Software environments must help people use tools to support the processes required to de
velop and maintain software products. We believe that this support must take the form of 
aids for building and aggregating software objects, and also aids for maintaining the integrity 
and consistency of these objects in the face of change. 

Recently many interesting software environments have integrated tools around persistent 
object stores within which software products develop as growing aggregates of smaller ob
jects. This work has focused attention on the types of software objects out of which software 
products are built, the structures into which the objects should be aggregated, and the tools 
and processes with which to build and aggregate the objects. 

In defining the structures into which software objects should be aggregated, this work 
has addressed important questions about how software objects should be related to each 
other. These structures define a static view of software products, indicating how a product's 
constituent parts should be juxtaposed and organized at the conclusion of a successful de
velopment activity. Much less understood is the difficult and equally important problem of 
controlling the emerging product's constituent parts during the dynamic process of develop
ment, when many kinds of changes can be expected to occur. Effective change management 
is especially dependent on the relationships between objects. 

During development, for example, new software objects are constantly being created and 
existing objects modified. The creation of new objects may trigger the derivation of addi
tional objects (e.g. compilation of object code from a new source module). The modification 
of existing objects may affect the correctness and consistency of dependent objects that are 
derived from, or defined in terms of, the changed object. Changes to dependent objects may 
in turn affect other objects. 

The propagation of changes requires first that the relevant dependency relationships be 
recognized and traced to identify the direction and extent of changes. It also requires that 
the semantics of these relationships be understood so that the proper kinds of changes can be 
determined. Finally, the changes must be effectively and rapidly implemented in accordance 
with the structure and semantics of the relationships. 

Change propagation is complicated by the fact that not all significant relationships can 
be known and planned for in advance. For example, during team development, different 
components of a software product may be built by different people. Sometimes only after 
these components have been completed does it become clear that they must bear some 
strict relationships to each other (e.g. they must use consistent calling sequences). Thus it 
becomes necessary to establish unplanned relationships between software objects during the 
development process. 

To summarize, managing the process of change requires an object manager with the 
capability to specify dependency relationships and then to be able to rapidly apply them, 
determine where inconsistencies have arisen as a result of these relationships, and then control 

3 



the process of changing the software product so that consistency is restored. 
We believe that a formalism for dynamically defining very diverse sorts of relationships 

among the classes and entities in a software environment, and for defining flexible responses 
to the detection of inconsistencies with respect to those relationships, is an indispensible 
mechanism upon which to base an environment's support for change. In the first part 
of this paper we briefly survey previous formalisms that have been proposed for software 
managers. We argue for the use of relations over objects as the appropriate formalism and for 
programmability as a major feature for overcoming the limitations of previous attempts to use 
relations. In the second part of the paper we describe APPL/ A, which is an extenstion of of 
Ada to include a relation construct. APPL/ A is our initial prototyping vehicle for exploring 
the utility of relations for representing software products and managing their changes. In 
the third part of the paper we show an example in which APPL/ A is applied to some typical 
kinds of changes and their effects. 

2 Non-Relational Approaches to Software 
Object Managment 

A number of non-relational data-management systems are available or proposed for software 
development environments. These offer a variety of data models and other features for 
data management, including consistency maintenance and change management. Our belief, 
though, is that none of these provides quite the right combination of model and features. 

These systems fall into three broad groups: 

• Specialized systems with ad hoc models. 

• General object-oriented systems which represent relationships between objects solely 
as attributes or properties of objects. 

• General systems with data models that represent relationships between objects with 
constructs that are separate from objects. 

Each of these is discussed below. 

2.1 Ad Hoc Models 

Considerable research in software engineering has been directed toward configuration man
agement and version control systems [45,18]. These systems may be integrated parts of a 
larger environment, such as Apollo DSEE [24,25] or Cedar [42,23], or they may comprise 
independent tools, such as the version control systems RCS [43] and SCCS [36]. In between 

4 



these extremes are systems like Make [16], Odin [11], and Adele [15], which support con
figuration management and version control by integration and coordination of independent 
tools. 

Configuration management systems typically support the automatic "building" of soft
ware systems based on formal "system models" (which may integrate version control). These 
systems support derived data of certain types, and they are able to represent derivation 
and "component-of'' relationships among the objects and/or types involved, typically in the 
form of a graph. Version control systems typically represent successive and/ or alternative 
versions of objects of various types in terms of trees (or occasionally DAGs ). Heimbigner 
and Krane [18] describe a general graph-transformation model for configuration management 
that subsumes many specific models. 

While these systems can represent important kinds of relationships among important 
kinds of objects, their models of objects and relationships may both be lacking. The objects 
are usually files of limited types; they are static, large-grained objects with few attributes 
(although they may have versions). The relationships are also usually of limited types and 
while they may represent derivation processes they may nevertheless be relatively static. 

There are a few exceptions to these generalizations. Odin (but not Make, Adele, or 
DSEE) supports multi-step inferencing in the derivation of objects. Odin, also unlike these 
other systems, automatically rederives derived objects that are out-of-date. Adele, how
ever, provides a relatively powerful mechanism for assembling components dynamically, and 
allows a user-definable set of attributes to be associated with these components. DSEE 
provides active elements separate from its configuration and version facilities, in the form of 
"monitors". 

Overall, while their capabilities vary, the systems discussed here are good at representing 
certain important kinds of objects and relationships. However, their models are too special
ized and while they provide structure for the coordination of some processes they lack the 
degree of activity that is necessary for consistency maintenance and change propagation in 
general. 

2.2 Models without Relationship Constructs 

Systems that lack separate constructs for of inter-object relationships tend to be strictly 
object-oriented in the structural sense. Objects are defined in terms of slots (and possibly also 
methods), and new types or classes of objects may be defined by inheritance from existing 
types or classes (of course, the terminology and concepts vary somewhat from system to 
system). Examples of such systems include VBase [4], EXODUS [7], and Trellis/Owl [38,30]. 

One characteristic shared by these is that inter-object relationships are represented solely 
as attributes or properties of objects. They provide no "free-standing" relationship construct 
that can be referenced independently of the objects related. This leads to two general 
problems. First, the relationship must be associated with one object when it may apply 

5 



equally well to two or more. Second, the relationship is reduced to a "second-class citizen"; 
it cannot be manipulated independently or assigned attributes of its own. This can be a 
problem in managing change since many relationships are naturally symmetric (e.g. between 
a specification and its implementation). 

For example, consider the "compiles" relationship between types source-code and object
code, which represents the derivation of an instance of the latter from an instance of the 
former. This relationship must be defined in terms of both types, but in a strict struc
turally object-oriented system it must be associated with one or the other. Additionally, 
the relationship may have attributes of its own, such as compile-time, compiler-flags, or 
error-messages, but there is no relationship object to which these can be attached (and it is 
dissatisfying to have to attach these to either one of the objects involved). 

An alternative in the object-oriented model is to create two relationships, "compiles-into", 
from source-code to object-code, and its inverse "compiled-from", from object-code to source
code (and indeed VBase supports the automatic generation of inverse relationships). This 
solves the problem of "asymmetrical" representation, but a single process, the compilation, 
is now represented in two places, and the consistency of these representations is now an issue. 
Moreover, it is still necessary to attach each relationship to an object, and there is no way 
to refer to a relationship independently or attach attributes to it. 

While structurally object-oriented data models tend to be weak with respect to the 
representation of relationships, those systems that also behaviorally object-oriented tend to 
be strong with respect to the implementation of relationships. The behavior of objects arises 
from the methods or operations that can be applied to them, and behaviorally object-oriented 
systems necessarily allow users to program methods. Some of these systems, such as VBase 
and Trellis/Owl, also allow users to program the implementation of attributes or properties 
of objects. In such systems attributes may take on computed as well as stored values. 
Thus programmable attributes can encapsulate derivation processes, which can be used to 
automate the creation and maintenance of relationships between objects. Additionally, they 
may also allow a high-level data management system to be abstracted from the underlying 
persistent storage system; that, in turn, may facilitate the evolution of the storage system 
and enable access to "foreign" data. 

2.3 Models with Relationship Constructs 
A variety of non-relational data management systems offer independent constructs for rep
resentation of relationships between objects. DAMOKLES [14] has an extended entity
relationship model which includes objects, relationships, and versions as its prime constructs. 
Objects may be composite, and may include subobjects, versions, and relationships, but 
relationships may also be "free-standing". PCTE [17] and CAIS [1] also take an entity
relationship approach. Encore [46] has an object-oriented type hierarchy, but it includes 
independent constructs for "properties" (which can relate objects) and operations (which 

6 



correspond to methods). Cactis [22] has a semantic model that includes types for both 
objects and relationships. · 

In each of these systems the decision was made to provide a separate relationship con
struct to enable relationships to be manipulated independently and/ or to allow attributes 
to be associated with them. Thus these models directly attempt to overcome the limitations 
of a strict object-oriented model. 

On the other hand, in these systems the relationships are extensional: the objects to be 
related must be specified (directly or indirectly) by the user. Unlike the programmable at
tributes of VBase and Trellis/Owl, the relationships do not encapsulate computations. Thus 
the maintenance of dependency relationships must be performed by every process that modi
fies those relationships. This is not to say that the systems cited here cannot support derived 
data. For example, in Cactis [22] an object can have derived attributes, those computations 
can depend on data that are propagated over relationships, and derived data are automati
cally rederived as needed when they are out-of-date. However, the derived attributes do not 
represent relationships (even though they may depend on them), the relationships must be 
established manually, and the derivation process is associated with the object rather than 
the relationship. 
In our opinion the most appropriate way to treat relationships among objects for pur
poses of software development is to combine the strengths of the object-oriented and entity
relationship approaches to provide a model in which relationships are "first-class" citizens. 
This implies that software object management should be based on a model of programmable 
relationships over objects, in which relationships are represented explicitly and in which they 
can encapsulate processes to automate derivations and propagate changes. 

3 Relational Approaches to Software 
Object Management 

There have been several attempts to support object-management for software development, 
VLSI design, and CAD using systems based on the relational data model [27,35,34,8,10, 
26,29,20,44,33]. Many advantages have been cited for this approach, such as support of 
teamwork [8], tool integration [8,10], support for multiple views of data [27,35}, and data 
independence [29,20,10], among others. vVe believe that a relational data model is also ap
propriate because it provides for the independent representation of inter-object relationships 
(in the form of tuples) and it allows those representations to be aggregated (into relations). 

However, systems based on the standard relational data model of Codd [12] have been 
criticized on two important grounds. First, the data model has been criticized because 
relations are "fiat": relations apply only to simple, atomic objects. Second, the performance 
of commercial relational databases has been found to be inadequate when used for software 
development and other design activities. 

7 



3.1 The Problem of "Flat" Relations 

An obvious response to the first criticism is to allow the attributes of relations to include 
non-atomic types. One alternative is that taken in ALGRES [9], which provides several type 
constructors (sets, multi-sets, lists, and records) which may be nested in any combination 
and to any degree. This enables the construction of relations over relations, for example. 
Another alternative is that taken in POSTGRES [37], in which attributes of relations can 
include abstract data types, although not other relations. POSTGRES [39] also includes 
other features that are important for change management, such as automatically-derived 
data and active elements ( "alerters" and "triggers"). 

Strictly speaking, such approaches move away from the conventional relational data 
model. However, they retain several of its important features. These include independent 
representation of relationships between objects, the ability to aggregate these relationships, 
and the ability to query these aggregations. 

3.2 The Problem of Performance 

The performance of relational systems is a known problem. For example, Linton [27] reports 
performance tests on the OMEGA system, which is implemented using the INGRES rela
tional database [40]. In this system the retrieval and display of a simple five-line program 
took 40 seconds (elapsed time) in response to an interpreted, non-buffered query and 7 sec
onds (elapsed time) in response to a compiled, buffered query. Performance with a longer 
program was notably worse. N avathe [29] cites studies that showed that commercially
available DBMS systems performed one and one-half to five times slower than specialized 
design systems for comparable tasks. 

Consequently, relational systems that have been developed specifically for software and 
design data typically include features to enhance performance [8,44,10,20]. While these 
techniques are successful to a degree, the implementations of these systems are neverthe
less specialized and fixed. Horwitz [21] has argued that individual relations should have 
programmable implementations. This would allow access to non-relational data structures 
that may have improved performance or other benefits. Moreover, she has argued that an 
operationally-efficient relational interface, combined with programmable implementations, 
should overcome many of the performance problems typically associated with relational sys
tems. She has shown that query-evaluation based on the three access functions membership
test, selective-retrieval, and relation-instantiation may be more efficient than traditional eval
uation methods for set operations on conventional relational databases. A similar notion is 
applied in the "multi-level data structures" of [28], in which the performance of a given ab
stract storage structure (such as a search table) is enhanced by an implementation in terms 
of several other storage structures (such as binary search trees and sorted arrays) among 
which data are moved by background processes. AP5 [13], an extension of Lisp to include a 

8 



combination of relations and predicate logic, also provides programmable implementations 
for relations (albeit relations stored in virtual memory). 

Programmability of relation implementations appears to offer a general mechanism for 
overcoming the performance limitations of conventional relational systems. It should be 
noted that programmability of this type is missing from both POSTGRES and ALGRES. 
Nevertheless, programmable implementations are not mutually incompatible with the kinds 
of features found in those systems. Indeed, our approach is based on the combination of an 
advanced relational data model with programmable implementations. 

4 Active, Programmable Relations as an Organizing 
Principle 

The principal tenet of this paper is that active, programmable relations over complex objects 
is a fundamental concept for software object management. More particularly, we believe that 
such relations are especially appropriate for tracking and managing the changes to software 
products. 

To summarize the conclusions of Sections 2 and 3, a data model for software development 
that provides adequate support for change management should 

• Be general and extendible 

• Represent both objects and relationships explicitly and independently 

• Allow relationships between complex objects 

• Allow relationships to represent and encapsulate processes 

• Provide for the aggregation of relationships 

• Allow programmable implementations 

• Support other forms of activity such as triggers and demons 

We are exploring the utility of programmable relations through the vehicle of a program
ming language. We feel that this language must be capable of representing typed objects, 
relations and their operations. Abstractly, relations are a subset of the cross-product of a 
list of object types. Each element in the relation is a tuple of attribute values. The attribute 
values can include composite objects and can be derived and constrained. The operations 
available for relations include of insert, delete, update, and selective-retrieve (corresponding 
approximately to the operations of [21]). Niore powerful operations can be programmed from 
these. Additionally, some operations can be omitted, for example to define "views" which 
are "read only". 

9 



The implementation of relations is assumed to be programmable. Relations are imple
mented in terms of processes, where processes correspond to programs in execution. By 
providing appropriate implementations for relations, a number of capabilities can be pro
vided: 

• Relations and the values they contain can be made persistent. The choice of mechanism 
for persistence if determined by the implementation. For example, one might use a 
conventional file system for storage, or a commercial relational database. 

• Relations may be programmed to derive attribute values, or check and maintain con
straints. Derivations can be performed using both conventional tools, such as compilers 
and analyzers, and also software process programs [31]. Constraints may be specified 
and programmed in terms of some constraint language, or by invocation of various 
monolithic analysis tools. 

• Relations can be proactive, i.e. operating independently, or reactive, i.e. responding 
directly to operations on the relation and indirectly to operations on other relations. 

• Computation strategy for derived attributes (e.g. "eager" vs. "lazy") and storage 
strategy for derived attributes (caching vs. recomputation), may be controlled through 
appropriate implementations. 

In order to explore the capabilities of programmable relations, we have chosen initially 
to extend Ada [2] with features for supporting relations. This extension is referred to as 
APPL/ A [41]. Our research efforts have focussed on defining the structure and semantics of 
APPL/ A and then applying the language to various software object management problems 
such as change maintenance, requirements specifications and design specifications. In the 
rest of this paper, we describe some of the details of APPL/ A and show by example how it 
may be used to manage some typical kinds of changes in a software product. 

5 APPL/A 

APPL/ A [41] is an extension to Ada [2] that includes features related to active, pro
grammable relations as described in Section 4. APPL/ A supplements Ada with a relation 
unit, a tuple type, and related control constructs including an indirect reactive mechanism, 
the upon statement. Relations provide persistent storage of Ada objects. APPL/ A is in
tended to be used as a prototype for experimentation in developing systems based on these 
features. 

The following subsections outline the principle features that APPL/ A adds to Ada. An 
example of a system of APPL/ A relations appears in the next section. 

10 



5.1 Relation Units 

APPL/ A defines a relation library unit. A relation unit has a specification and a body. The 
specification defines the specific logical properties of an abstract data type that is generally 
a multiset of tuples. The body provides a programmed implementation for those properties 
in accordance with the definition of the language. Like tasks, relations represent parallel 
threads of execution in a program; thus relations are active. Also like tasks, relations can be 
used to define both types and instances. All relation instances must provide for the persistent 
storage of tuples up to the lifetime of the relation type definition. 

5.2 Relation Specifications 

A relation specification includes 

• An external storage specification. 

• A tuple type declaration, which defines the type of tuple abstractly stored in the 
relation. 

• Relation entry declarations, which represent a restricted set of operations on the rela
tion. 

• Computational dependencies, which define the ways in which attribute values are com
puted. 

• Constraint specifications, which restrict the tuples stored in the relation. 

Each of these is discussed in a following subsection. 

5.3 Relation Bodies 

The general syntactic and semantic properties of relation bodies are defined by APPL/ A, but 
the particular implementation of those properties is not defined. Thus APPL/ A relations 
have programmable implementations. 

Syntactically, relation bodies are similar to task bodies. To support the semantics of 
relations the body must 

• Implement the operations on the relation, as indicated by specified entries, in accor
dance with their defined semantics. 

• Implement the computation of attribute values as indicated by specified computational 
dependencies. 

• Enforce specified constraints on attribute values and tuples. 

11 



• Provide persistent abstract storage for tuples up to the lifetime of the type definition 
for the relation. 

However, the body of the relation is not constrained with respect to storage systems, com
putation and caching strategies, inferencing for constraint maintenance or other purposes, 
or other activities in general. 

We believe that the semantic restrictions on relation implementations support an es
pecially useful abstraction. The lack of other constraints on implementations facilitates 
prototyping, evolution, adaptation, and extension of systems. 

5.4 Tuples 

APPL/ A tuple types are syntactically similar to Ada record types. The components of a 
tuple type are known as attributes; each attribute has a mode, which is one of in, in 
out, or out. Tuples are abstractly stored in and are retrievable from relations. Values for 
attributes of mode in must be given by the user; values for attributes of mode out are 
computed automatically in the relation; values for attributes of mode in out may be given 
by the user but then may be replaced by values computed in the relation. Tuples retrieved 
from a relation receive copies of values abstractly stored in the relation; to help maintain 
consistency between those tuples and the relation values may not be assigned individually 
to attributes outside of the body of a relation. Otherwise whole tuples may be assigned and 
compared for equality. 

5.5 Relation Entries 

Operations on relations are effected through entries that are syntactically similar to task 
entries. Relation operations are restricted to find and selected plus any subset of insert, 
update, and delete. 

The insert entry takes values for those attributes of mode in and in out and effects the 
logical storage of a tuple with those values. The update entry effects the logical update
in-place of attributes of mode in and in out of selected tuples in the relation. The delete 
entry effects the logical deletion of selected tuples in the relation. 

The find and selected entries are used to selectively retrieve tuples from a relation and 
to trigger operations by that retrieval. These entries are not directly callable from user 
programs; instead they are used to implement iteration over relations, which is described 
below. When a tuple is retrieved it includes not only the attribute values given by a user 
but also any attribute values computed automatically in the relation. 

12 



5.6 Computational Dependencies and Constraints 

Attributes of APPL/ A relations can take on computed values. These attributes must have 
mode out or in out. The way in which an attribute value is to be computed can be 
indicated by a computational dependency specification. These specifications stipulate that a 
given attribute (or list of attributes) is to be computed using a given subprogram or entry 
with given values as input; the inputs can include the values of other attributes in the tuple 
or other identifiable values. If a dependency specification is given for an attribute then that 
attribute can only take on values in accordance with that specification. Computed attributes 
provide for derived objects; in conjunction with computational dependency specifications 
they enable the representation of derivation relationships and allow for automation of the 
derivation process. 

Constraints are predicates that characterize the state of a relation. They are expressed 
in terms of relational predicates, which include conditional and quantified forms. They can 
apply both to attributes and tuples, and they can be expressed in terms of other attributes 
and tuples in the same or other relations. The constraints must be true of all tuples that 
are retrievable from a relation; APPL/ A constraints are conventional in this way. Planned 
extensions to the language include constraint-like expressions that are to be regarded as goals 
to be satisfied eventually rather than as immediate restrictions. 

5. 7 Iteration over Relations 

Tuples are retrieved from relations using an iterative construct of the form 

for t in R where P loop 
S; 

end loop; 

where R is a relation, t is a loop variable of the tuple type for R, P is a predicate used to 
select values from R for t, and S is a statement that may operate on t. Each tuple in R 
that satisfies P is assigned to t in turn. This iteration is implemented in terms of repeated 
calls to the find and selected entries for R. Calls to the find entry effect the retrieval of 
some subset of the tuples in R; upon the conclusion of iteration (if it is not interrupted) the 
retrieved tuples must comprise a superset of the tuples in R that satisfy P. For each retrieved 
tuple that actually satisfies P the selected entry is called with that tuple as a parameter 
and Sis executed. The selected entry can thus be used by the relation to invoke processes 
in response to the selective retrieval of a tuple. 

5.8 "Upon" Statements 

The upon statement provides a reactive mechanism that allows a process to respond in
dependently and asynchronously to operations on relations. The upon statement has the 

13 



general form 

upon E invoke 
S; 

end upon; 

where Sis a statement and E is an "invocation event." Invocation events are entry calls into 
relations. Thus, an insert call into relation R generates an event "R.insert( ... )." 

Each relation, task, subprogram, or package that includes an upon statement has associ
ated with it a conceptual event queue. This event queue stores records of information about 
relation entry calls that are referenced as invocation events in the upon statements of that 
program unit. When an invocation event occurs a record for it is enqueued in the event queue 
of each unit that has cited that invocation condition. These records are queued in the order 
in which the invocation events occur; the records contain the identity of the corresponding 
relation entry and the values of the actual parameters with which it was called. 

When control in a process reaches an upon statement it may proceed only if the event 
queue has at its head a record for the corresponding invocation event. otherwise control is 
suspended at that point, until the invocation event occurs, if ever. If and when the above 
condition is satisfied, the record is dequeued from the event queue, the appropriate values 
are assigned to the formal parameters of the invocation event, and execution of the upon 
statement proceeds. 

Upon staten1ents can be used wherever accept statements can be used, in particular in 
select statements, so it is possible to execute upon statements selectively and conditionally. 

6 An Example System of Relations 

This section presents an example of a small system of interconnected relations. It describes 
their specifications and implementations. These have been chosen to illustrate various fea
tures of APPL/ A, including a range of possible implementation strategies, and to show how 
these features facilitate changes of different kinds in a software environment. 

The example begins with two relations, C_to_Object and Object_to_Executable, that 
represent a simple "Make" -like [16] system for maintaining relationships between C source 
code and the corresponding object and executable code. (For simplicity, it is assumed that 
each C source module represents a complete program; it is straightforward to define relations 
that enable programs to be constructed from multiple modules.) The example continues with 
the addition of two more relations, C.J)FA and Bug_Reports. Reference is made to various 
tools and abstract types; for simplicity, these are assumed to be defined elsewhere. 

The implementations of these relations are described generally in terms of policies gov
erning the derivation and storage of data and mechanisms for the maintenance of consistency 

14 



between relations. The implementations are not described with respect specific storage sys
tems. However, note that the storage systems for these relations are programmable, i.e. that 
the choice of a storage system is up to the programmer. All of the relations could share a com
mon storage system, or each could have its own storage system. These can be programmed 
independently; consequently, the storage system for any one relation can be changed without 
affecting the others. In this way the programmability of storage implementations provides 
an additional mechanism for system evolution and prototyping. 

6.1 Relation C_to_Object 
Relation C_to_Object (Figure 1) represents the derivation relationship between C source 
code and the object code that is compiled from it. The tuple type for this relation has four 
attributes: "name", the name of the source-code module, "c", the source code itself, "obj", 
the object code, and "errs", error messages produced during the compilation. "Name" and 
"c" have mode in and are given by the user. "Obj" and "errs" have mode out and are be 
computed automatically; this computation is indicated in the "dependencies" part of the 
relation specification. The relation thus encapsulates the compilation process. 

The relation has entries for insertion, deletion, updating, and retrieval (the "find" and 
"selected" entries). Constraints on the relation require that "name" and "c" have non-empty 
(i.e. non-null) values and that (as a result of the compilation process) either "obj" or "errs" 
must have a non-empty value. Constraints also require that tuples have unique "name" and 
"c" values. 

There are several generic implementation strategies for this relation (i.e. strategies that 
are independent of the particular storage system used). For this example we propose the 
following implementation of the entries: 

• Insert: Upon insertion the constraints on given "name" and "c" values are checked. 
If these are violated the exception "constraint_error" is raised. If not, the compiler 
is invoked to derive the object code and error messages, and the results are stored 
persistently. This represents an eager strategy for evaluation of computed attributes 
plus caching of the computed values. If the co1npilation is successful then the "insert" 
entry for relation Object_to_Executable is invoked with the resulting object code to 
propagate that code (see Section 6.2). This effects the automatic forward propagation 
of the object code. 

• Delete: The selected tuples are deleted. If the object code in any of these would 
have been propagated to Object_to_Executable then the "delete" entry for that re
lation is invoked to delete the corresponding tuples. Thus deletion is automatically 
propagated. In this way no object code and executable modules are left "dangling" in 
Object_to_Executable without a corresponding source module in C_to_Object. 

15 



relation C_to_Dbject is 
Relates C code to object code compiled from it 

type c_to_object_tuple is tuple 
name: in name_type := empty; 
c: in c_code := empty; 
obj: out object_code :=empty; 
errs: out compile_error_msgs := empty; 

end tuple; 
entries 

entry insert( 
name: in name_type := empty; 
c: in c_code :=empty); 

entry delete( ... ); 
entry update( ... ); 
entry find( ... ); 
entry selected( ... ); 

dependencies 
t.c determines t.obj, t.errs, 

by compile_c(t.c, t.obj, t.errs); 
constraints 

no t in C_to_Object satisfies 
t.c = empty or t.name = empty; 

or 
(t.obj =empty and t.errs =empty); 

end no; 

all t1 in C_to_Dbject satisfy 
no t2 in C_to_Object satisfies 

t1 /= t2 and (ti.c = t2.c or ti.name = t2.name); 
end no; 

end all; 
End C_to_Object; 

Figure 1: Sketch of Specification for Relation C_to_Object 

16 



• Update: Only "name" and "c" values may be updated directly (since these are the 
only attributes with mode in). If "name" is updated then the stored value is simply 
changed. If "c" is updated then "obj" and "errs" are recomputed and stored, and if 
the compilation is successful the object code is propagated to Object_to_Executable 
(as with "insert"). In this way derived data are updated automatically, and changes 
are propagated between relations. 

The "find" entry simply returns the first or next selected tuple, as requested. The "selected" 
entry is empty (but it is nevertheless included because it is invoked automatically during 
execution to trigger the signal of a retrieval event, which may be of interest to other relations). 

6.2 Relation Object_to_Executable 
This relation represents the derivation relationship between object code and executable code 
(Figure 2). Its specification is similar to that of C_to_Object (Figure 1). It has three 
attributes: "obj", the object code, "exe", the derived executable code, and "errs", the 
error messages produced by the loader. In this case "obj" has mode in and must be inserted 
directly, while "exe" and "errs" have mode out and are derived automatically by applying the 
loader to the object code (as specified under "dependencies"). The relation thus encapsulates 
the loading process. 

The relation has "insert" and "delete" entries, plus entries "find" and "selected", but 
not "update". Constraints on the relation require that "obj" be non-empty and that either 
"exe" or "errs" be non-empty (as a result of loading). Also each tuple is required to be 
unique, and no tuple can have object code that is not also present in relation C_to_Object 
(this implies that the source code for each executable module must be retained). 

Despite the abstract similarity of this relation to C_to_Object, the implementation can be 
very different. To illustrate this, we can design the implementation of Object_to_Executable 
to act as follows: 

• Insert: When object code is inserted simply store it persistently. Do not compute the 
executable code and error messages at this time. 

• Delete: Delete the selected tuples. If the selection of tuples depends on the executable 
code or the error messages and these have not yet been computed then invoke the 
loader. Cache any computed values that are not deleted. 

• Find: Retreive the first (or next) selected tuple, as requested. Invoke the loader to 
derive the executable code and error messages if they are not already available. Cache 
any newly computed values. 

This implementation illustrates a lazy evaluation strategy for the derived attributes, with 
caching of computed values for future reference. (An alternative implementation would be 
to simply rederive them upon every request and not store them at all.) 

17 



relation Object_to_Executable is 
Relates object code to executable code derived from it 

type object_to_executable_tuple is tuple 
obj: in object_code :=empty; 
exe: 
errs: 

end tuple; 
entries 

out executable_code := empty; 
out load_error_msgs := empty; 

entry insert(obj: in object_code :=empty); 
entry delete( ... ); 
entry find( ... ); 
entry selected( ... ); 

dependencies 
t.obj determines t.exe, t.errs, 

by load(t.obj, t.exe, t.errs); 
constraints 

no t in Object_to_Executable satisfies 
t.obj = empty; 

or 
(t.exe =empty and t.errs =empty); 

end no; 

all t1 in Object_to_Executable satisfy 

and 

no t2 in Object_to_Executable satisfies 
t1 /= t2 and t1.obj = t2.obj; 

end no; 

some t in C_to_Object satisfies 
t1.obj = t.obj; 

end some; 
end all; 

End Object_to_Executable; 

Figure 2: Sketch of Specification for Relation Object_to.Executable 

18 



6.3 Relation C_DFA 

Suppose that subsequent to the programming of relations C_to_Object and Object_to_Exe
cutable a data-flow analysis tool for C programs becomes available. We can encapsulate this 
analysis in another relation, C.J)FA, that represents the derivation relationship between C 
code and the data-flow analysis, and we can provide automated connections between C.J)FA 
and C_to_Object without reprogramming that relation. 

The tuple type for C.J)FA will have "name" and "c" as given attributes and "dfa" as an 
attribute derived from the corresponding "c" value. The "c" values will be constrained to be 
non-empty and to be a superset of those in C_to_Object (to ensure that data flow analyses 
exist for those modules). 

This relation, like C_to_Object, can be implemented using an "eager" evaluation strat
egy with caching of the computed results. However, in addition to the relation entries, 
the body of this relation will include upon statements that are activated in response to 
operations on C_to_Object. In particular, in response to C_to_Object.insert( c, name), the 
new C code is "captured" by C_DFA, analyzed, and stored. A similar response occurs to 
C_to_Object.update. (An analogous response could be programmed in response to C_to_Ob
ject.delete, but there is no requirement that C_DFA include only that C code in C_to_Object, 
and it may be useful to preserve flow analyses for source code that is not compiled.) 

The use of upon statements enables the behavior of C_DFA to be linked to that of 
C_to_Object without affecting C_to_Object or requiring that it be reprogrammed. In this 
example the upon statement is used to maintain the state of one relation relative to an
other. Other uses are possible, including, for example, the collection of software metrics and 
monitoring of system use. This illustrates that the upon statement generally facilitates the 
extension of interconnected systems of relations and provides an indirect reactive mechanism 
by which their behavior can be automated and observed. 

6.4 Relation Bug_Reports 

Suppose now that a decision is made to collect information on problems or errors in C 
programs to facilitate their maintenance. This information can be represented in a relation 
"Bug..Reports". Abstractly, for each source code module named in C_to_Object, Bug_Reports 
collects the compiler error messages from C_to_Object, the loader error messages, if any, from 
Object_to.Executable, and the data flow analyses from C_DFA. 

This relation can be implemented as a view of relations C_to_Object, Object_to.Execut
able, and C_DFA. In this case no information will be stored for Bug..Reports; whenever a 
user requests information for a unit, that information will be retrieved from the underlying 
relations. The tuple type for Bug_.Reports will look like 

type bug_reports_tuple is tuple 
name: out name_type; 

19 



compile_errs: out compile_error_msgs; 
load_errs: out load_error..msgs; 
dfa: out c_data_fiow ..analysis; 

end tuple; 

Note that all of the attributes have mode out, since all are computed within the relation. Ad
ditionally, Bug_Reports will lack entries for insert, delete, and update, since these operations 
are not applicable to the view. 

The design of Bug...Reports as a view enables it to be added to the previous relations 
without receding or otherwise affecting those relations. Moreover, since no data are stored for 
Bug_Reports, there is no problem in maintaining consistency with those underlying relations. 
The use of views is thus another approach by which systems of interconnected relations can 
be effectively extended and maintained. 

7 Status and Experience 

A formal syntax and semantics have been defined for APPL/ A, as have rules for the trans
lation of APPL/ A constructs into standard Ada. These have been evolving gradually as we 
gain experience with the language. APPL/ A has been used to program REBUS, a system 
which supports the specification of software requirements in a functional hierarchy. REBUS 
maintains data about requirements in APPL/ A relations; the relation specifications and 
bodies comprise about 2700 lines of code, exclusive of runtime support systems and storage 
system interfaces. APPL/ A is being used to extend REBUS to include features based on 
RSL/REVS [3,6] and to construct a design support systems based on the Rational Design 
Methodology of Parnas [32] and the IEEE design standard [5]. 

The use of APPL/ A in REBUS has helped us to refine and reenforce both APPL/ A and 
the principles on which it is based [19]. Ongoing research will enable us to continue to eval
uate APPL/ A and the model behind it. As principles evolve and the APPL/ A mechanisms 
are updated we expect to gain additional insights into the requirements for managing change 
during software development. 

8 Acknowledgements 

This research was supported by the Defense Advanced Research Projects Agency, through 
DARPA Order #6100, Program Code 7E20, which was funded through grant #CCR-8705162 
from the National Science Foundation. The authors wish to thank Deborah Baker, Roger 
King, Shehab Gamalel-din, and Mark Maybee for their advice. The comments of the mem
bers of the Arcadia consortium were also important in clarifying the issues surrounding 

20 



APPL/A. 

References 

[1] DoD requirements and design criteria for the common APSE interface set (CAIS). Oc
tober 1986. Prepared by the KAPSE Interface Team (KIT) and the KIT -Industry
Academia (KITIA) for the Ada Joint Program Office (AJPO). 

[2] Reference Manual for the Ada Programming Language. United States Department of 
Defense, 1983. ANSI/MIL-STD-1815A-1983. 

[3] Mack W. Alford. A requirements engineering methodology for real-time processing 
requirements. IEEE Trans. on Software Engineering, SE-3(1):60- 69, January 1977. 

[4] Timothy Andrews and Craig Harris. Combining language and database advances in an 
object-oriented development environment. In OOPSLA, 1987. 

[5] Jack H. Barnard, Robert F. Metz, and Arthur L. Price. A recommended practice for 
describing software designs: ieee standards project 1016. IEEE Trans. on Software 
Engineering, SE-12(2):258 - 263, February 1986. 

[6] E. Bell, Thomas, David C. Bixler, and Margaret E. Dyer. A requirements engineering 
methodology for real-time processing requirements. IEEE Trans. on Software Engineer
ing, SE-3(1):49 -59, January 1977. 

[7] Michael J. Carey, David J. DeWitt, Daniel Frank, Goetz Graefe, Joel E. Richardson, 
Eugene J. Shekita, and M Muralikrishna. The Architecture of the E.J'YODUS Extensible 
DBMS: a Preliminary Report. Technical Report Computer Sciences Technical Report 
#644, University of Wisconsin, Madison, Computer Sciences Department, May 1986. 

[8] S. Ceri and S. Crespi-Reghizzi. Relational data bases in the design of program con
struction systems. SIGPLAN Notices, 18(11):34-44, November 1983. 

[9] S. Ceri, S. Crespi-Reghizzi, L. Lavazza, and R. Zicari. ALGRES: A System for the 
Specification and Prototyping of Complex Databases. Technical Report 87-018, Dipar
timento di Elettronica - Politecnico di Milano, P.zza Leonardo da Vinci 32, I-20133 
Milano, Italy, 1987. 

[10] Kung-chao Chu, John P. Fishburn, Peter Honeyman, and Y. Edmund Lien. Vdd- a 
VLSI design database system. In Database Week: Engineering Applications, pages 25-
37, IEEE, 1983. IEEE catalog number CH1886-1/83/0000/0025. 

21 



[11] Geoffrey M. Clemm. The Odin System: an Object Manager for Extensible Software 
Environments. Technical Report CU-CS-314-86, Univ. of Colorado, Dept. of Computer 
Science, Boulder, Colorado, 1986. 

[12] E. F. Codd. "A Relational Model for Large Shared Data Banks". Comm. ACM, 
13(6):377-387, 1970. 

[13] Don Cohen. AP5 Manual. Univ. of Southern California, Information Sciences Institute, 
March 1988. 

[14] Klaus R. Dittrich, Willi Gotthard, and Peter C. Lockemann. DAMOKLES- a database 
system for software engineering environments. In International Workshop on Advanced 
Programming Environments, IFIP WG2.4, 1986. 

[15] J. Estublier. "A Configuration Manager: The ADELE Data Base of Programs". 
In Workshop on Software Engineering Environments for programming-in-the-large, 
pages 140-147, Harwichport, Mass, June 1985. 

[16] Stuart I. Feldman. Make - a program for maintaining computer programs. Software -
Practice and Experience, 9:255 - 265, 1979. 

[17] Ferdinanda Gallo, Regis Minot, and Ian Thomas. The object management system of 
pete as a software engineering database management system. In Proc. Second ACM 
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Develop
ment Environments, pages 12 - 15, 1986. 

[18] Dennis Heimbigner and Steven Krane. A graph transform model for configuration 
management environments. In Proc. Third A CM SIGSOFT Symposium on Software 
Development Environments, November 1988. to appear. 

[19] Dennis Heimbigner, Leon J. Osterweil, and Stanley M. Sutton, Jr. Active Relations for 
Specifying and Implementing Software Object Management. Technical Report CU-CS-
406-08, Univ. of Colorado, Dept. of Computer Science, Boulder, Colorado 80309, July 
1988. 

(20] Lee Hollaar, Brent Nelson, and Tony Carter. The structure and operation of a relational 
database system in a cell-oriented integrated circuit design system. In 21st Design 
Automation Conference, pages 117-125, ACM/IEEE, 1984. 

[21] Susan Horwitz. Adding Relational Databases to Existing Software Systems. Technical 
Report Computer Sciences Technical Report #67 4, University of Wisconsin, Madison, 
Computer Sciences Department, 1986. 

22 



[22] Scott E. Hudson and Roger King. The cactis project: database support for software 
environments. IEEE Trans. on Software Engineering, 14(6):709-719, June 1988. 

[23] B. W. Lampson and E. E. Schmidt. Organizing software in a distributed environment. 
SCM SIGPLAN Notices, 18(6):1 - 13, 1983. 

[24] David B. Leblang and R. P. Chase, Jr. Computer-aided software engineering in a 
distributed workstation environment. In Proc. of the A CM SIGSOFT /SIGP LAN Sym
posium on Practical Software Environments, pages 104 - 112, April 1984. Also ACM 
Software Engineering Notes, v. 9, n. 3, May 1984. 

[25] David B. Leblang and Gordon D. McLean Jr. Configuration management for large-scale 
software development efforts. In Workshop on Software Engineering Environments for 
Programming in the Large, pages 122 - 127, 1985. 

[26] Y. C. Lee and K. S. Fu. A CGS based DBMS for CAD /CAM and it's supporting query 
language. In Database Week: Engineering Applications, pages 123-130, IEEE, 1983. 
IEEE catalog number CH1886-1/83/0000/0123. 

[27] Mark A. Linton. Implementing relational views of programs. SIGPLAlv Notices, 
19(5):132-140, May 1984. Proc. of the ACM SIGSOFT /SIGPLAN Software Engineer
ing Symposium on Practical Software Development Environments, Pittsburgh, April 
23-25, 1984. 

[28] Abha Moitra, S. Sitharama Iyengar, Farokh B. Bastani, and I. Ling Yen. Multilevel data 
structures: models and performance. IEEE Trans. on Software Engineering, 14(6):858 
- 867, June 1988. 

[29] Shamkant B. Navathe. Data base management of computer-aided-design data. In G. V. 
Reklaitis and J. J. Siirola, editors, Data Base Implementation and Application, pages 43-
50, AIChE, 1983. 

[30] Patrick O'Brien, Bruce Bullis, and Craig Schaffert. Persistent and Shared Objects in 
Trellis/Owl. Technical Report DEC-TR-440, Digital Equipment Corporation, Hudson, 
Massachusetts, July 1986. See also the International Workshop on Object-Oriented 
Database Systems, 23-26 September 1986, Asilomar Conference Center, Pacific Grove, 
California. 

[31] Leon J. Osterweil. Software processes are software too. In Proc. 1Vinth International 
Conference on Software Engineering, 1987. 

(32] David L. Parnas and Paul C. Clements. A rational design process: how and why to 
fake it. IEEE Trans. on Software Engineering, SE-12(2):251 - 257, February 1986. 

23 



[33] M. H. Penedo. Prototyping a project master database for software engineering envi
ronments. In Proc. ACM SIGSOFT/SIGPLAN Software Engineering Symposium on 
Practical Software Development Environments, pages 1-11, ACM, 1986. 

[34] Michael A. Powell and Mark A. Linton. Database support for programming environ
ments. In Database Week: Engineering Applications, pages 63-70, IEEE, 1983. IEEE 
catalog number CH1886-1/83/0000/0063. 

[35] Michael L. Powell and Mark A. Linton. A database model of debugging (preliminary 
draft). 1983. ACM catalog number 0-89791-111-3/83/007/0067. 

[36] Mark J. Rochkind. The source code control system. IEEE Trans. on Software Engi
neering, SE-1:364- 370, December 1975. 

[37] L. A. Rowe and Michael R. Stonebraker. "The POSTGRES Data Model". In Proc. of 
the 13th VLDB Conference, pages 83-96, 1987. 

[38] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. "An 
Introduction to Trellis/Owl". In OOPSLA '86 Conf Proc., pages 9-16, 1986. Available 
as ACM SIGPLAN Notices 21, 11, November 1986. 

[39] Michael Stonebraker and Lawrence A. Rowe. The design of postgres. In Proc. of the 
ACM SIGlvfOD International Conf on the Management of Data, pages 3.40-355, 1986. 

[40] Michael R. Stonebraker, P. Kreps, and Gerald D. Held. "The Design and Implementa
tion of INGRES". ACM TODS, 1(3), September 1976. 

[41] Stanley M. Sutton, Jr. The APPL/A Programming Language- Definition and Status. 
Arcadia Document CU-88-02, Univ. of Colorado, Dept. of Computer Science, Boulder, 
Colorado 80309, February 1988. Draft. 

[42] W. Teitelman. A tour through cedar. IEEE Software, April1984. 

[43] W. Tichy. Design, implementation, and evaluation of a revision control system. In Sixth 
International Conf. on Software Engineering, 1982. 

[44] Zara Robert V. and David R. Henke. Building a layered database for design automation. 
In 22nd Design Automation Conference, pages 645-651, ACM/IEEE, 1985. Paper 40.1. 

[45] Jurgen F. H. Winkler, editor. International Workshop on Software Version and Con
figuration Control, Tubner-Verlag, Grassau, West Germany, January 1988. 

[46] Stanley B. Zdonik and Peter Wegner. A database approach to languages, libraries, and 
environments. In Workshop on Software Engineering Environments for Programming 
in the Large, pages 89 - 112, 1985. 

24 


